NAG Toolbox for MATLAB

c06lb

1 Purpose

c06lb computes the inverse Laplace transform f(t) of a user-supplied function $\mathbf{f}(s)$, defined for complex s. The function uses a modification of Weeks' method which is suitable when f(t) has continuous derivatives of all orders. The function returns the coefficients of an expansion which approximates f(t) and can be evaluated for given values of t by subsequent calls of c06lc.

2 Syntax

```
[sigma, b, m, acoef, errvec, ifail] = c06lb(f, sigma0, sigma, b, epstol,
'mmax', mmax)
```

3 Description

Given a function f(t) of a real variable t, its Laplace transform $\mathbf{f}(s)$ is a function of a complex variable s, defined by

$$F(s) = \int_0^\infty e^{-st} f(t) dt, \qquad \text{Re}(s) > \sigma_0.$$

Then f(t) is the inverse Laplace transform of $\mathbf{f}(s)$. The value σ_0 is referred to as the abscissa of convergence of the Laplace transform; it is the rightmost real part of the singularities of $\mathbf{f}(s)$.

c06lb, along with its companion c06lc, attempts to solve the following problem:

given a function f(s), compute values of its inverse Laplace transform f(t) for specified values of t.

The method is a modification of Weeks' method (see Garbow et al. 1988a), which approximates f(t) by a truncated Laguerre expansion:

$$\tilde{f}(t) = e^{\sigma t} \sum_{i=0}^{m-1} a_i e^{-bt/2} L_i(bt), \qquad \sigma > \sigma_0, \qquad b > 0$$

where $L_i(x)$ is the Laguerre polynomial of degree i. This function computes the coefficients a_i of the above Laguerre expansion; the expansion can then be evaluated for specified t by calling c06lc. You must supply the value of σ_0 , and also suitable values for σ and b: see Section 8 for guidance.

The method is only suitable when f(t) has continuous derivatives of all orders. For such functions the approximation $\tilde{f}(t)$ is usually good and inexpensive. The function will fail with an error exit if the method is not suitable for the supplied function $\mathbf{f}(s)$.

The function is designed to satisfy an accuracy criterion of the form:

$$\left| \frac{f(t) - \tilde{f}(t)}{e^{\sigma t}} \right| < \epsilon_{tol}, \quad \text{for all } t$$

where ϵ_{tol} is a user-supplied bound. The error measure on the left-hand side is referred to as the **pseudo-relative error**, or **pseudo-error** for short. Note that if $\sigma > 0$ and t is large, the absolute error in $\tilde{f}(t)$ may be very large.

c06lb is derived from the (sub)program MODUL1 in Garbow et al. 1988a.

4 References

Garbow B S, Giunta G, Lyness J N and Murli A 1988a Software for an implementation of Weeks' method for the inverse laplace transform problem *ACM Trans. Math. Software* **14** 163–170

Garbow B S, Giunta G, Lyness J N and Murli A 1988b Algorithm 662: A Fortran software package for the numerical inversion of the Laplace transform based on Weeks' method *ACM Trans. Math. Software* **14** 171–176

5 Parameters

5.1 Compulsory Input Parameters

1: **f - string containing name of m-file**

f must return the value of the Laplace transform function $\mathbf{f}(s)$ for a given complex value of s. Its specification is:

[result] = f(s)

Input Parameters

1: s - complex scalar

The value of s for which $\mathbf{f}(s)$ must be evaluated. The real part of s is greater than σ_0 .

Output Parameters

1: result – complex scalar

The result of the function.

2: sigma0 – double scalar

The abscissa of convergence of the Laplace transform, σ_0 .

3: sigma – double scalar

The parameter σ of the Laguerre expansion. If on entry sigma $\leq \sigma_0$, sigma is reset to $\sigma_0 + 0.7$.

4: **b – double scalar**

The parameter b of the Laguerre expansion. If on entry $\mathbf{b} < 2(\sigma - \sigma_0)$, **b** is reset to $2.5(\sigma - \sigma_0)$.

5: epstol – double scalar

The required relative pseudo-accuracy, that is, an upper bound on $|f(t) - \tilde{f}(t)|e^{-\sigma t}$.

5.2 Optional Input Parameters

1: mmax – int32 scalar

Default: The dimension of the array acoef.

an upper bound on the number of Laguerre expansion coefficients to be computed. The number of coefficients actually computed is always a power of 2, so **mmax** should be a power of 2; if **mmax** is not a power of 2 then the maximum number of coefficients calculated will be the largest power of 2 less than **mmax**.

Suggested value: mmax = 1024 is sufficient for all but a few exceptional cases.

Default: 1024

Constraint: $mmax \ge 8$.

5.3 Input Parameters Omitted from the MATLAB Interface

None.

c06lb.2 [NP3663/21]

5.4 Output Parameters

1: sigma – double scalar

The value actually used for σ , as just described.

2: **b – double scalar**

The value actually used for b, as just described.

3: m - int32 scalar

The number of Laguerre expansion coefficients actually computed. The number of calls to user-supplied complex function \mathbf{f} is $\mathbf{m}/2 + 2$.

4: acoef(mmax) - double array

The first **m** elements contain the computed Laguerre expansion coefficients, a_i .

5: **errvec(8)** – **double** array

An 8-component vector of diagnostic information:

errvec(1) = overall estimate of the pseudo-error $|f(t) - \tilde{f}(t)|e^{-\sigma t}$;

= errvec(2) + errvec(3) + errvec(4);

errvec(2) = estimate of the discretization pseudo-error;

errvec(3) = estimate of the truncation pseudo-error;

errvec(4) = estimate of the condition pseudo-error on the basis of minimal noise levels in

function values;

errvec(5) = K, coefficient of a heuristic decay function for the expansion coefficients;

errvec(6) = R, base of the decay function for the expansion coefficients;

errvec(7) = logarithm of the largest expansion coefficient; and

errvec(8) = logarithm of the smallest nonzero expansion coefficient.

The values K and R returned in $\mathbf{errvec}(5)$ and $\mathbf{errvec}(6)$ define a decay function KR^{-i} constructed by the function for the purposes of error estimation. It satisfies

$$|a_i| < KR^{-i},$$
 for $i = 1, 2, ..., m$.

6: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Note: c06lb may return useful information for one or more of the following detected errors or warnings.

ifail = 1

On entry, mmax < 8.

ifail = 2

The estimated pseudo-error bounds are slightly larger than **epstol**. Note, however, that the actual errors in the final results may be smaller than **epstol** as bounds independent of the value of t are pessimistic.

ifail = 3

Computation was terminated early because the estimate of rounding error was greater than **epstol**. Increasing **epstol** may help.

ifail = 4

The decay rate of the coefficients is too small. Increasing mmax may help.

ifail = 5

The decay rate of the coefficients is too small. In addition the rounding error is such that the required accuracy cannot be obtained. Increasing **mmax** or **epstol** may help.

ifail = 6

The behaviour of the coefficients does not enable reasonable prediction of error bounds. Check the value of **sigma0**. In this case, **errvec**(i) is set to -1.0, for i = 1 to 5.

When **ifail** ≥ 3 , changing **sigma** or **b** may help. If not, the method should be abandoned.

7 Accuracy

The error estimate returned in **errvec**(1) has been found in practice to be a highly reliable bound on the pseudo-error $|f(t) - \tilde{f}(t)|e^{-\sigma t}$.

8 Further Comments

8.1 The Role of σ_0

Nearly all techniques for inversion of the Laplace transform require you to supply the value of σ_0 , the convergence abscissa, or else an upper bound on σ_0 . For this function, one of the reasons for having to supply σ_0 is that the parameter σ must be greater than σ_0 ; otherwise the series for $\tilde{f}(t)$ will not converge.

If you do not know the value of σ_0 , you must be prepared for significant preliminary effort, either in experimenting with the method and obtaining chaotic results, or in attempting to locate the rightmost singularity of $\mathbf{f}(s)$.

The value of σ_0 is also relevant in defining a natural accuracy criterion. For large t, f(t) is of uniform numerical order $ke^{\sigma_0 t}$, so a **natural** measure of relative accuracy of the approximation $\tilde{f}(t)$ is:

$$\epsilon_{\rm nat}(t) = (\tilde{f}(t) - f(t))/e^{\sigma_0 t}.$$

The function uses the supplied value of σ_0 only in determining the values of σ and b (see below); thereafter it bases its computation entirely on σ and b.

8.2 Choice of σ

Even when the value of σ_0 is known, choosing a value for σ is not easy. Briefly, the series for $\tilde{f}(t)$ converges slowly when $\sigma - \sigma_0$ is small, and faster when $\sigma - \sigma_0$ is larger. However the natural accuracy measure satisfies

$$|\epsilon_{\rm nat}(t)| < \epsilon_{tol} e^{(\sigma - \sigma_0)t}$$

and this degrades exponentially with t, the exponential constant being $\sigma - \sigma_0$.

Hence, if you require meaningful results over a large range of values of t, you should choose $\sigma - \sigma_0$ small, in which case the series for $\tilde{f}(t)$ converges slowly; while for a smaller range of values of t, you can allow $\sigma - \sigma_0$ to be larger and obtain faster convergence.

The default value for σ used by the function is $\sigma_0 + 0.7$. There is no theoretical justification for this.

8.3 Choice of b

The simplest advice for choosing b is to set $b/2 \ge \sigma - \sigma_0$. The default value used by the function is $2.5(\sigma - \sigma_0)$. A more refined choice is to set

c06lb.4 [NP3663/21]

$$b/2 \ge \min_{i} |\sigma - s_{i}|$$

where s_i are the singularities of $\mathbf{f}(s)$.

9 Example

```
c06lb_f.m
 function [f] = c06lb_f(s)
   f=3.0/(s^2-9.0);
   if isreal(f)
     f=complex(f);
   end
sigma0 = 3;
sigma = 0;
b = 0;
epstol = 1e-05;
[sigmaOut, bOut, m, acoef, errvec, ifail] = ...
    c06lb('c06lb_f', sigmaO, sigma, b, epstol, 'mmax', int32(512))
sigmaOut =
    3.7000
bOut =
    1.7500
m =
           64
acoef =
   0.4400
   -0.1506
   -0.0614
   -0.0533
   -0.0403
   -0.0311
   -0.0239
   -0.0184
   -0.0141
   -0.0109
   -0.0084
   -0.0064
   -0.0049
   -0.0038
   -0.0029
   -0.0022
   -0.0017
   -0.0013
   -0.0010
   -0.0008
   -0.0006
   -0.0005
   -0.0004
   -0.0003
   -0.0002
   -0.0002
   -0.0001
   -0.0001
   -0.0001
   -0.0001
   -0.0000
   -0.0000
   -0.0000
   -0.0000
   -0.0000
```

	ĺ
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
-0.0000	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0 0 0 0	
0	
0	
0	
0 0 0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
ń	
0	
0	
0 0 0 0 0 0 0 0 0 0 0 0	
1	
•	

c06lb.6 [NP3663/21]

c06lb

Ö		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
Ö		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
		·

0		
Ü		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
U		
O		
0		
0		
0		
0		
0		
0		
0		
U		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
U		
O		
0		
0		
0		
0		
0		
0		
0		
0		
U		
0		
0		
0		
0		
0		
Õ		
0		
U		
U		
0		
0		
0		
0		
Ŭ		
		•

c06lb.8 [NP3663/21]

c06lb

0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
Ö	
0	
0	
0	
0	
0	
0	
0	
Ö	
0	
0	
0	
0	
0	
0	
0	
0	
Ö	
0	
0	
I	ı

1			l
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	000000000000000000000000000000000000000		
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	0		
	0 0		
	0		
	0 0		
	0		
	0		
	0		
	0		
	0		

c06lb.10 [NP3663/21]

c06lb

0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
Ö		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
0		
Ö		
0		
0		
0		
I		ļ

```
0
0
0
0
0
0
0
               0
0
0
0
0
               0
               0
               0
               0
0
0
0
0
               0
               0
               0
0
0
0
0
0
0
               0
0
0
0
0
0
0
               0
               0
               0
errvec = 0.0000
      0.0000
       0.0000
       0.1155
       1.3004
               0
   -18.7081
ifail =
                   0
```

c06lb.12 [NP3663/21]

[NP3663/21] c06lb.13 (last)